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ABSTRACT -

Porce diagrams involving angular velocity, linear
velocity, centripetal force, work, and kinetic energy are given with
related equations of motion expressed in polar coordinates. The
conputer is used to solve differential equations, thus reducing the
mathematical requirements of the students. An experiment is corducted
using an air table to check theoretical consideratioas with actual
results vhich were in close agreement with predicted values. (T5)
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1irz. Namely, the force component f¢ points in the =y
diraction, oppcsite ©o the motion of the ball. The deduction

1e malkes from tais fact is that the bhall should

n

slow up in

the g-direction, rather than increase in angular srpeed gs it

moves eround the pole. Another interesting fact that enerses

from inspection of the diagram is that the force f is always
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erpendicular to the path followed by the ball, and therefore

the work done by the force f is ZeroAthraugh out the motion

of the ball. If the student is able to recall the work-enerzy

theorem, namely, that the work done by the resultant force

.)

is equal to the change in kinetic energy, he obtains the
result that the change in kinetic energy between any two
points on the path is gero. Therefore, the lrinetic energy

of the ball must be a constant, and it then follows’ that

‘the linear speed of the bzall must also be ¢ constant.

J

'The student is now told to have faith idin Newton's 2nd
law. The ball is not microscopic in size nor is it going

o be-travelind at a speed rear that of light. Th refore,

_the answers to Hll ouestlons relating to the motion of the

ball shoald be obtalned by correctlv applying Newton's 2nd
law to the problem. Lo procoed analytlcally, the weasonaale

assumption is made‘that~the force f is a centripetal- lrke

force, the point where the string is just touching the pole

acting as the instantaneous center of the circular! moticn
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the next slidé (Slide 2—~enuat1ene) Even though the speed
v has been deduced to be a censtant, the point of view is
talken that this fact should emerge as a result from apelying
Newﬁon*s nd law. Thus, vZ2 is replaced by its polar coordinate
expression. Hesolving the force £ into its components, and
after some manipulation and simplification, eguations of
motion in the r and @ directions are obhtained, as:shown-on
the lower part of the slide. Both equations are nonlinear.
Although the equation in r is simple enough so that 1t can
e solved in closed ferm by defining a new variable (although
it is not obvious what that new variable-should'be: u = 2—r2),
the one in & is not. Since the use of the computer to solve
differential equations is to be emphasized in this problem, -
both equations are solved numerically using Euler's method for
simplicity. |

»it is useful to direct the student's attention to tnese
equations before proéeeding_to the numericalvsolution; First
of all,.it is noted that the mass of the ball does not appear,
end‘so is unimportant as far as the motion 1is concerned. The
:‘eqﬁation.ih‘r,simele.e‘It'sayskthat ?.is always negatiVe.
;Therefere T is always negatlve also "in agreement With tﬁe
fact t hat the baJl always moves Loward the center of the
nele; The equatlon 1n d is more comollcated. At first glance
it would appear that dols always negatlve 1ndlcat1ng that the
angular velocity ﬁlshould become smaller, disagreeing with
exXperience, but eg}eeing with the fact thatvfﬁ points in the,

~¢ direction. Inspecting the equation more closely, however,

3
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it is seen that although the lst two terms on the rignt hand
side are always negative, uhe-Brd term is not. Because T is
negative, this latter term will be positive, assuming that g4
has a positive initial value. It turns out that this 3rd
term is the predominant one, and is always larger than the
sum of the lst two terms. For this reason X is alwavs
positive, and the angular velocity 8 indeed increases. The
lst two terms arise becaﬁse of the f¢ force, and it 1s seen
that they do try to slow down the motion in'd. However, this
effect is masked by the 3rd term, which is 5 kinematical-type
term. It has to do with the fact that a given arc length
subtends larger and largsr angles as the origin of tne co-
ordinate system is approached.

As a. by-product of the numerical solution using the com-
puter, the actual values of these '3 terms can easily be prlnted
out as the solutlon is bullt up numerlcally.r It is wvery 11—
lumlnatln@‘to che student to actually see that the lst- two
terms are always negatlve and small, and Lhat the 3rd term is
posltlve and relaulvely large.

T he . 1n1t1a1 condltlons used 1n thlS example are shown

‘   ln the next sllde (Sllde 3—-1n1t1a1 condltlons) Graphs of the

sresulus are shown in tne next ueveral slldes.. ThlS ‘slide
j(Slldeluf-r‘and-r vs t) shows the behavior of r and r or V..
jvérsus’t. Thevnext silde (Slide 5——¢ and ¢ Vs t) shows the
varlculon of 4 and the angular velocity £ or w. We see that

w does increase. as the ball is drawn nearer the pole as time
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soes on (in fact, it increases more and more rapidly), in
accord with our experience. |

The next slide (Slide 6--f vs t) shows what happens to
the force magnitude as time goes on. It appears that both &
and f blow up as the ball approaches the pole. In actual.
practice this behavior does not occur because the ball is not
a particle, as we have assumed, but has a non-zero size and
so hits the pole while ¢ and f still have finite values.

The next slide (Slide 7--Work vs t) is a very interesting

-

one. It shows the Work W, and Wﬁyperformed in the r and 4-
directions, respectively, as well as the total work done. Ve
can now see why the f¢ force componentcis necessary--~namely,
to glve a negative work to just‘bslance the positive work
done by the f,. force compbnent. The total work done is
therefprs Zero, agreeing with our observation that the force £
is always perpendicular toﬁthe path, and so can do no work.
To obtain actual numcrlcal values from the cor puilcr gi.i- = Lese
results for W, W4, and W is quite striking.

The next siide {8 llde 8—-path.of ball) shows the actual

path folldWéd by the ball, and its position at equal intervals

of time (time 1*terval = 10 mseC) f Tho even s sacing: of the

dots reflscts”tne constant llnear Speed that the ball has,

which is cons1stent with the result obtained earlier from the

WOrk-ehergy'theorem. Again thz2 computer printout of the -

=

same values for =he speed as the initial speed (in this case,

100 cm/sec) is also quite striking.

O

As good thS-ClSuS should, it is desirable'to check the . Ql

tneoretlcal results w1tn actual exnerlment. It 1s not dllilChl

| _m”
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to set this experiment upfon an air table and photograph the
position of the mass using a strobe. The next slide (slide
Q9——~strobe photof*shows the result. The simi;arity between
this slide and the previous one is quite evident. Careful
measurement shows that the puck does’slow down slightly, but
this behavior is apparently due to the small frictional force
that exists between the air layer and puck.
The problem can also be set up to show that as the size
of At in the numerical anralysis is made_smaller, the accuracy
“of the answers improve. But only up to a point, for computers
have a _imit to their word length and round off error also
plays a role. Thus, some of the pitfalls of numerical analysis
can also be displayed.

‘ Mv experience has shown that problems like this one are
1nstrumental in building up the student's’ confidence in under-
standing an’ applYing the laws Qf‘phy51qs,‘espe01ally where
it anbears that'the fdfmél application of the physical laws
is going to yleld 1ncorrect anSWGTS , and then doesn't.

B In 01031ng, I'would llke to thank Mr. Brude-Lee for

subestlng the problem, and for many helpful dlscuss;ons.

vallde 9 could not be reproduced
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APPENDIX--Derivation of the Equations of Motion

3
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diagram in
Figure 1 shows the
poéition of the mass m

at a time t,.and’the |
'pertinent variables in‘

an (r,¢) polar coor-
dinate system with

origin at the cehter

of the pol%. The radius
of the pole is a, the
initial length of

the string is f,, v is
“the ‘fflcity of the ball,
£ is #he force'exerted

on the‘ballfby*the_stfing,
‘and g' is the‘angle between
the Horlzontal and the

1rad1al llne drawn to the

001nt C where the strlng
ﬁels Just beglnnlng to make5' A
fecontact w1th the pole. '7' '._  etgi;* ‘ Figure 1

T Assumlng that the force f is a: centr1petal one w1th
flnstantaneous center of rotatlon at C, we have for 1ts_

magnitude

= )

R
'7{

(’L) _F oomyt  om (f'tt,"*/”b.d;q')
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The components are seen 10O be.

£ = -‘Fm go°~ (- 4")]""“

n

nCeend), o

(2) '
m (/1’1-/\«1‘45’7’)

f4= — £ aun [ 90°- Ccé»aﬁ') o woe(g-47)

Inspection of Figure 1 shows that

) manGep) = BEE e (s =

Substituting equations (4) into equations (2) gives
nn(ﬁf‘+—ﬂf¥#f)
, ~ _

) _ ma.(/l, A d’l)

i 4_4, T Al

erilny Newton s 2nd law in polar coordlnates gives

;vn (ﬂ. ﬂ—? )

(5) 'm(/Lch-l-QIzCP) E}

” gSubst1tut1ng equat10n° (h) 1nto (5) and 51mpllfy1ng ylelds

-7f fthe equatlons of motlon.f“;ﬁff{f*

e 4 g aié
0 f='— oy .
,2  U (4u> V—7ﬁ) ‘.“? :
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